Time and frequency propagation in free space with instabilities from 10 to 19 over 113 km


  • Mehlstäubler, T. E., Grosche, G., Lisdat, C., Schmidt, P. O. & Denker, H. Atomic clocks for geodesy. Program delegate. Phys. 81064401 (2018).

    advertisements
    Article – Commodity

    Google Scholar

  • Lesdat, C. et al. A Clock Network for Geodesy and Basic Sciences. nat. common. 712443 (2016).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Riehle, F., Gill, P., Arias, F. & Robertsson, L. CIPM’s list of recommended frequency standard values: guidelines and procedures. metrology 55188-200 (2018).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Riehle, F. Towards a redefinition of the second based on optical atomic clocks. CR Phys. 16506-515 (2015).

    CAS
    Article – Commodity

    Google Scholar

  • McGraw, WF et al. Towards a light-second: Checking light-hours at the SI limit. optics 6448 (2019).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Bize, S. The unit of time: current and future trends. CR Phys. 20153–168 (2019).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Kolkowitz, S et al. Detection of gravitational waves using retinal optical atomic clocks. Phys. Reverend Dr 94124043 (2016).

    advertisements
    Article – Commodity

    Google Scholar

  • Campbell, SL et al. Fermi gradient 3D optical lattice clock. Sciences 35890-94 (2017).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • McGraw, W et al. The performance of the atomic clock allows for geodesy below the centimeter level. temper nature 56487 (2018).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Dechen, J.-D. et al. Synchronization of distant optical clocks at the femtosecond level. Phys. tenth priest 6021016 (2016).

    Google Scholar

  • Sinclair, LC et al. The clocks synchronized through 12 km of turbulent air over the city. Phys application. Lett. 109151104 (2016).

    advertisements
    Article – Commodity

    Google Scholar

  • Derevianko, A. & Pospelov, M. Searching for topological dark matter using atomic clocks. nat. Phys. 10933-936 (2014).

    CAS
    Article – Commodity

    Google Scholar

  • Delva, P. et al. Testing of special relativity using a fiber grid for optical clocks. Phys. Reverend Litt. 118221102 (2017).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Safronova, MS et al. Find new physics with atoms and molecules. Rev. DoD. Phys. 90025008 (2018).

    advertisements
    MathSciNet
    CAS
    Article – Commodity

    Google Scholar

  • Chin Molecules, C., Flambaum, VV & Kozlov, M.G. Ultracold: new investigations into differing fundamental constants. New J. Phys. 11055048 (2009).

    advertisements
    Article – Commodity

    Google Scholar

  • Roberts, B.M. et al. Find the transient differences of the fine-structure constant and dark matter using optical atomic clocks attached to fibres. New J. Phys. 22093010 (2020).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Liu, Wai et al. Experimental distribution of a two-domain quantum key with or without transmission. Phys. Reverend Litt. 123100505 (2019).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Drust, S. et al. Optical frequency transmission over a fiber link with a length of 1840 km. Phys. Reverend Litt. 111110801 (2013).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Briddahl, K et al. A 920 km optical fiber link for frequency measurement in 19th decimal place. Sciences 336441-444 (2012).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Kanteen, E. et al. Accurate and robust metrological network for coherent optical frequency propagation. New J. Phys. 23053027 (2021).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Katori, H. Optical retinal clocks and quantum scales. nat. Photonics 5203 (2011).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Giorgita, FR et al. Two-way optical time and frequency transmission across free space. nat. Photonics 7434 (2013).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Bowden, May et al. Optical time-frequency transmission over a free-space three-node network. APL . photonics 5076113 (2020).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Shen, Q. et al. Experimental simulation of time and frequency transfer over an optical satellite ground link in the instabilities of 10 to 18. optics 8471 (2021).

    advertisements
    Article – Commodity

    Google Scholar

  • Bowden, May et al. Comparison of the optical atomic clock through turbulent air. Phys. Res Rev. 233395 (2020).

    CAS
    Article – Commodity

    Google Scholar

  • Belloy, K et al. Frequency ratio measurements with 18 digits precision using optical clock grid. temper nature 591564-569 (2021).

    advertisements
    Article – Commodity

    Google Scholar

  • Bergeron and others. Synchronization of the femtosecond light clocks of a flying quadcopter. nat. common. 101819 (2019).

    advertisements
    Article – Commodity

    Google Scholar

  • Sinclair, LC et al. Comparison of optical oscillators through air in milliradians in phase and 10−17 in frequency. Phys. Reverend Litt. 120050801 (2018).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Gozzard, DR et al. An ultrastable free-space laser links a global network of optical atomic clocks. Phys. Reverend Litt. 128020801 (2022).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Sameen, E et al. Time transmission by laser linkage: a complete uncertainty budget analysis. metrology 52423-432 (2015).

    advertisements
    Article – Commodity

    Google Scholar

  • Cacciapuoti, L. & Schiller, S. I-SOC Scientific Requirements Technical Report (European Center for Space Research and Technology, 2017).

  • Exertier, P. et al. Time scale and lasers: a window of opportunity for geodesy, navigation and measurement. J. Geod. 932389-2404 (2019).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Robert, C.; Conan, J.-M. & Wolfe, b. The effect of turbulence on high-resolution terrestrial-satellite frequency transmission with two-way coherent optical links. Phys. Reverend A 93033860 (2016).

    advertisements
    Article – Commodity

    Google Scholar

  • Swan, WC et al. Measuring the effect of contrast contrast perturbation on the fine transmission of visual time in free space. Phys. Reverend A 99023855 (2019).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Strohbehn, J.W. (Editor) Propagation of the laser beam in the atmosphereTopics in Applied Physics Vol. 25 (Springer, 1978); https://doi.org/10.1007/3-540-08812-1

  • Conan, J.-M. , Russett, G. & Madec, P.-Y. Forward wave time spectra in high-resolution imaging through perturbations. J. Opt. Akon Corporation. a 121559-1570 (1995).

    advertisements
    Article – Commodity

    Google Scholar

  • Bausch, A. et al. Comparison of frequency standards in Europe and the United States in 10−15 level of uncertainty. metrology 43109-120 (2006).

    advertisements
    Article – Commodity

    Google Scholar

  • Fogida, M et al. Satellite-based advanced frequency transmission in 10−16 level. IEEE Trans. Ultrasound. ferroliter. frequent. control 65973-978 (2018).

  • Schioppo, M. et al. Ultra-stable optical watch with two sets of cold atoms. nat. Photonics 1148-52 (2017).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Oelker, E. et al. Demonstration 4.8 x 10−17 Stabilization at 1 sec for two independent optical clocks. nat. Photonics 13714-719 (2019).

  • Calosso, CE, Clivati, C. & Micalizio, S. Anti-aliasing avoidance in Alan’s anisotropy: an application for fiber correlation data analysis. IEEE Trans. Ultrasound. ferroliter. frequent. control 63646-655 (2016).

    Article – Commodity

    Google Scholar


  • Leave a Reply

    Your email address will not be published. Required fields are marked *